This example builds off the Join schemas on instrument ID example.
Examples and tutorials
Options
Equity options: Introduction
Options on futures: Introduction
All options with a given underlying
Join options with underlying prices
US equity options volume by venue
Resample US equity options NBBO
Estimate implied volatility
Get symbols for 0DTE options
Calculate daily statistics for equity options
Historical data
Request a large number of symbols
Programmatic batch downloads
Best bid, best offer, and midprice
Custom OHLCV bars from trades
Join schemas on instrument ID
Plot a candlestick chart
Calculate VWAP and RSI
End-of-day pricing and portfolio valuation
Benchmark portfolio performance
Market halts, volatility interrupts, and price bands
Resample OHLCV from 1-minute to 5-minute
Algorithmic trading
A high-frequency liquidity-taking strategy
Build prediction models with machine learning
Execution slippage and markouts
Matching engine latencies
Using messaging rates as a proxy for implied volatility
Mean reversion and portfolio optimization
Pairs trading based on cointegration
Build a real-time stock screener
Core concepts
Venues and datasets
CME Globex MDP 3.0
Cboe BYX Depth
Cboe BYZ Depth
Cboe EDGA Depth
Cboe EDGX Depth
Databento US Equities Basic
Databento US Equities Mini
Databento US Equities Summary
Eurex Exchange
European Energy Exchange
ICE Endex iMpact
ICE Europe Commodities iMpact
ICE Europe Financials iMpact
ICE Futures US iMpact
IEX TOPS
MEMX Memoir
MIAX Depth of Market
Nasdaq Basic with NLS Plus
Nasdaq TotalView-ITCH
NYSE American Integrated
NYSE Arca Integrated
NYSE Texas Integrated
NYSE National Trades and BBO
NYSE Integrated
OPRA Pillar
Corporate actions
Adjustment factors
Security master
API Reference
Resources
Release notes
C++
0.42.0 - 2025-08-19
0.41.0 - 2025-08-12
0.40.0 - 2025-07-29
0.39.1 - 2025-07-22
0.39.0 - 2025-07-15
0.38.2 - 2025-07-01
0.38.1 - 2025-06-25
0.38.0 - 2025-06-10
0.37.1 - 2025-06-03
0.37.0 - 2025-06-03
0.36.0 - 2025-05-27
0.35.1 - 2025-05-20
0.35.0 - 2025-05-13
0.34.2 - 2025-05-06
0.34.1 - 2025-04-29
0.34.0 - 2025-04-22
0.33.0 - 2025-04-15
0.32.1 - 2025-04-07
0.32.0 - 2025-04-02
0.31.0 - 2025-03-18
0.30.0 - 2025-02-11
0.29.0 - 2025-02-04
0.28.0 - 2025-01-21
0.27.0 - 2025-01-07
0.26.0 - 2024-12-17
0.25.0 - 2024-11-12
0.24.0 - 2024-10-22
0.23.0 - 2024-09-25
0.22.0 - 2024-08-27
0.21.0 - 2024-07-30
0.20.1 - 2024-07-16
0.20.0 - 2024-07-09
0.19.1 - 2024-06-25
0.19.0 - 2024-06-04
0.18.1 - 2024-05-22
0.18.0 - 2024-05-14
0.17.1 - 2024-04-08
0.17.0 - 2024-04-01
0.16.0 - 2024-03-01
0.15.0 - 2024-01-16
0.14.1 - 2023-12-18
0.14.0 - 2023-11-23
0.13.1 - 2023-10-23
0.13.0 - 2023-09-21
0.12.0 - 2023-08-24
0.11.0 - 2023-08-10
0.10.0 - 2023-07-20
0.9.1 - 2023-07-11
0.9.0 - 2023-06-13
0.8.0 - 2023-05-16
0.7.0 - 2023-04-28
0.6.1 - 2023-03-28
0.6.0 - 2023-03-24
0.5.0 - 2023-03-13
0.4.0 - 2023-03-02
0.3.0 - 2023-01-06
0.2.0 - 2022-12-01
0.1.0 - 2022-11-07
Python
0.63.1 - TBD
0.63.0 - 2025-09-02
0.62.0 - 2025-08-19
0.61.0 - 2025-08-12
0.60.0 - 2025-08-05
0.59.0 - 2025-07-15
0.58.0 - 2025-07-08
0.57.1 - 2025-06-17
0.57.0 - 2025-06-10
0.56.0 - 2025-06-03
0.55.1 - 2025-06-02
0.55.0 - 2025-05-29
0.54.0 - 2025-05-13
0.53.0 - 2025-04-29
0.52.0 - 2025-04-15
0.51.0 - 2025-04-08
0.50.0 - 2025-03-18
0.49.0 - 2025-03-04
0.48.0 - 2025-01-21
0.47.0 - 2024-12-17
0.46.0 - 2024-12-10
0.45.0 - 2024-11-12
0.44.1 - 2024-10-29
0.44.0 - 2024-10-22
0.43.1 - 2024-10-15
0.43.0 - 2024-10-09
0.42.0 - 2024-09-23
0.41.0 - 2024-09-03
0.40.0 - 2024-08-27
0.39.3 - 2024-08-20
0.39.2 - 2024-08-13
0.39.1 - 2024-08-13
0.39.0 - 2024-07-30
0.38.0 - 2024-07-23
0.37.0 - 2024-07-09
0.36.3 - 2024-07-02
0.36.2 - 2024-06-25
0.36.1 - 2024-06-18
0.36.0 - 2024-06-11
0.35.0 - 2024-06-04
0.34.1 - 2024-05-21
0.34.0 - 2024-05-14
0.33.0 - 2024-04-16
0.32.0 - 2024-04-04
0.31.1 - 2024-03-20
0.31.0 - 2024-03-05
0.30.0 - 2024-02-22
0.29.0 - 2024-02-13
0.28.0 - 2024-02-01
0.27.0 - 2024-01-23
0.26.0 - 2024-01-16
0.25.0 - 2024-01-09
0.24.1 - 2023-12-15
0.24.0 - 2023-11-23
0.23.1 - 2023-11-10
0.23.0 - 2023-10-26
0.22.1 - 2023-10-24
0.22.0 - 2023-10-23
0.21.0 - 2023-10-11
0.20.0 - 2023-09-21
0.19.1 - 2023-09-08
0.19.0 - 2023-08-25
0.18.1 - 2023-08-16
0.18.0 - 2023-08-14
0.17.0 - 2023-08-10
0.16.1 - 2023-08-03
0.16.0 - 2023-07-25
0.15.2 - 2023-07-19
0.15.1 - 2023-07-06
0.15.0 - 2023-07-05
0.14.1 - 2023-06-16
0.14.0 - 2023-06-14
0.13.0 - 2023-06-02
0.12.0 - 2023-05-01
0.11.0 - 2023-04-13
0.10.0 - 2023-04-07
0.9.0 - 2023-03-10
0.8.1 - 2023-03-05
0.8.0 - 2023-03-03
0.7.0 - 2023-01-10
0.6.0 - 2022-12-02
0.5.0 - 2022-11-07
0.4.0 - 2022-09-14
0.3.0 - 2022-08-30
HTTP API
0.35.0 - TBD
0.34.1 - 2025-06-17
0.34.0 - 2025-06-09
0.33.0 - 2024-12-10
0.32.0 - 2024-11-26
0.31.0 - 2024-11-12
0.30.0 - 2024-09-24
0.29.0 - 2024-09-03
0.28.0 - 2024-06-25
0.27.0 - 2024-06-04
0.26.0 - 2024-05-14
0.25.0 - 2024-03-26
0.24.0 - 2024-03-06
0.23.0 - 2024-02-15
0.22.0 - 2024-02-06
0.21.0 - 2024-01-30
0.20.0 - 2024-01-18
0.19.0 - 2023-10-17
0.18.0 - 2023-10-11
0.17.0 - 2023-10-04
0.16.0 - 2023-09-26
0.15.0 - 2023-09-19
0.14.0 - 2023-08-29
0.13.0 - 2023-08-23
0.12.0 - 2023-08-10
0.11.0 - 2023-07-25
0.10.0 - 2023-07-06
0.9.0 - 2023-06-01
0.8.0 - 2023-05-01
0.7.0 - 2023-04-07
0.6.0 - 2023-03-10
0.5.0 - 2023-03-03
0.4.0 - 2022-12-02
0.3.0 - 2022-08-30
0.2.0 - 2021-12-10
0.1.0 - 2021-08-30
Raw API
0.6.4 - TBD
0.6.3 - 2025-09-07
0.6.2 - 2025-08-02
0.6.1 - 2025-06-29
0.6.0 - 2025-05-24
0.5.6 - 2025-04-06
0.5.5 - 2024-12-01
0.5.4 - 2024-10-02
0.5.3 - 2024-10-02
0.5.1 - 2024-07-24
2024-07-20
2024-06-25
0.5.0 - 2024-05-25
0.4.6 - 2024-04-13
0.4.5 - 2024-03-25
0.4.4 - 2024-03-23
0.4.3 - 2024-02-13
0.4.2 - 2024-01-06
0.4.0 - 2023-11-08
0.3.0 - 2023-10-20
0.2.0 - 2023-07-23
0.1.0 - 2023-05-01
Rust
0.34.0 - 2025-09-23
0.33.1 - 2025-08-26
0.33.0 - 2025-08-19
0.32.0 - 2025-08-12
0.31.0 - 2025-07-30
0.30.0 - 2025-07-22
0.29.0 - 2025-07-15
0.28.0 - 2025-07-01
0.27.1 - 2025-06-25
0.27.0 - 2025-06-10
0.26.2 - 2025-06-03
0.26.1 - 2025-05-30
0.26.0 - 2025-05-28
0.25.0 - 2025-05-13
0.24.0 - 2025-04-22
0.23.0 - 2025-04-15
0.22.0 - 2025-04-01
0.21.0 - 2025-03-18
0.20.0 - 2025-02-12
0.19.0 - 2025-01-21
0.18.0 - 2025-01-08
0.17.0 - 2024-12-17
0.16.0 - 2024-11-12
0.15.0 - 2024-10-22
0.14.1 - 2024-10-08
0.14.0 - 2024-10-01
0.13.0 - 2024-09-25
0.12.1 - 2024-08-27
0.12.0 - 2024-07-30
0.11.4 - 2024-07-16
0.11.3 - 2024-07-09
0.11.2 - 2024-06-25
0.11.1 - 2024-06-11
0.11.0 - 2024-06-04
0.10.0 - 2024-05-22
0.9.1 - 2024-05-15
0.9.0 - 2024-05-14
0.8.0 - 2024-04-01
0.7.1 - 2024-03-05
0.7.0 - 2024-03-01
0.6.0 - 2024-01-16
0.5.0 - 2023-11-23
0.4.2 - 2023-10-23
0.4.1 - 2023-10-06
0.4.0 - 2023-09-21
0.3.0 - 2023-09-13
0.2.1 - 2023-08-25
0.2.0 - 2023-08-10
0.1.0 - 2023-08-02
Data
2025-09-23
2025-08-26
2025-08-05
2025-07-25
2025-07-06
2025-07-01
2025-06-27
2025-06-17
2025-06-10
2025-05-20
2025-05-07
2025-04-05
2025-04-01
2025-03-13
2025-02-26
2025-02-01
2025-01-15
2024-12-14
2024-12-03
2024-12-02
2024-10-22
2024-10-24
2024-07-05
2024-06-25
2024-06-18
2024-05-07
2024-01-18
2023-11-17
2023-10-04
2023-08-29
2023-07-23
2023-05-01
2023-04-28
2023-03-07
Collapse all
Examples and tutorials
Options
Join options with underlying prices
Info
Overview
In this example we will request trades data for all front month outright options and join them with the most recent quote for the underlying future.
Example
import databento as db
import pandas as pd
# Create a historical client
client = db.Historical(key="$YOUR_API_KEY")
# Set parameters
dataset = "GLBX.MDP3"
symbol = "CL.c.0"
start = "2023-04-03T13:00:00"
end = "2023-04-03T13:10:00"
# Get symbol mapping for the continuous contract
symbol_map = client.symbology.resolve(
dataset=dataset,
symbols=symbol,
stype_in="continuous",
stype_out="instrument_id",
start_date="2023-04-03",
)
# Get instrument ID for the front month future
front_month_id = int(symbol_map["result"][symbol][0]["s"])
# Get all option definitions, starting from Sunday
def_data = client.timeseries.get_range(
dataset=dataset,
schema="definition",
symbols=["LO.OPT"],
stype_in="parent",
start="2023-04-02",
)
# Convert to DataFrame
def_df = def_data.to_df()
# Filter for options on the front month future
opt_def_df = def_df[
(def_df["user_defined_instrument"] == db.UserDefinedInstrument.NO) &
(def_df["instrument_class"].isin((db.InstrumentClass.CALL, db.InstrumentClass.PUT))) &
(def_df["underlying_id"] == front_month_id)
]
# Get trades data for options on the front month future
opt_trades_df = client.timeseries.get_range(
dataset=dataset,
schema="trades",
symbols=opt_def_df["instrument_id"].to_list(),
stype_in="instrument_id",
start=start,
end=end,
).to_df()
# Get MBP-1 data for the front month future
fut_mbp_df = client.timeseries.get_range(
dataset=dataset,
schema="mbp-1",
symbols=front_month_id,
stype_in="instrument_id",
start=start,
end=end,
).to_df()
fut_mbp_df = fut_mbp_df[["bid_px_00", "ask_px_00"]]
fut_mbp_df = fut_mbp_df.sort_index()
# Join options with their definitions
opt_df = opt_trades_df.merge(
opt_def_df,
on="instrument_id",
how="inner",
suffixes=("", "_def"),
).set_index("ts_event")
opt_df = opt_df.sort_index()
# Join most recent underlying bid/ask with options trades
df = pd.merge_asof(
opt_df,
fut_mbp_df,
left_index=True,
right_index=True,
direction="backward",
)
# Rename the columns
df = df.rename(
columns={
"ask_px_00": "underlying_ask",
"bid_px_00": "underlying_bid",
},
)
print(df[["strike_price", "instrument_class", "price", "underlying_bid", "underlying_ask"]].head())
Result
strike_price instrument_class price underlying_bid underlying_ask
ts_event
2023-04-03 13:00:05.464491127+00:00 75.5 P 0.81 80.24 80.25
2023-04-03 13:00:10.275423815+00:00 80.0 P 2.26 80.22 80.24
2023-04-03 13:00:30.917505675+00:00 72.0 P 0.34 80.19 80.20
2023-04-03 13:00:30.927198369+00:00 72.0 P 0.34 80.18 80.19
2023-04-03 13:01:15.044222777+00:00 75.0 P 0.75 80.01 80.03